The InnerEarLab explores sensory processing in the inner ear during normal and impaired function. A common focus of the groups in the InnerEarLab is on sensory encoding in the inner ear by specialized synapses the hair cell ribbon synapses. We combine various techniques for studying the molecular anatomy and physiology of these synapses. The junior group of Ellen Reisinger deals with the molecular biology and genetics of cochlear neurotransmission, studying gene expression, protein biochemistry and structure of hair cell synaptic proteins and performs genetic manipulations of hair cells for physiological studies and preparing the grounds for future gene therapy. The junior group of Carolin Wichmann studies the molecular ultrastructure of synapses using light and electron microscopy. The group of Tobias Moser uses patch-clamp, optical methods, and biophysical modeling to study structure and function of hair cell ribbon synapse and the endbulb of Held synapse in the cochlear nucleus. The junior group of Tina Pangršič Vilfan studies the molecular and cellular physiology of vestibular neurotransmission. The junior group of Nicola Strenzke studies auditory systems physiology at the single neuron and population levels. The group of Bernstein Fellow Andreas Neef uses experiments and modeling to explore sound encoding at the microscopic scale. The Canis group studies cochlear blood flow using intravital microscopy and pharmacology. The Moser and Strenzke groups also work on establishing optogenetic stimulation of the auditory nerve as a tool for auditory research and improved hearing restoration by cochlear implants. The Canis, Moser, and Strenzke groups also perform clinical research.


Institute for Auditory Neuroscience
Department of Otolaryngology
Sensory Research Center SFB 889
Center for Molecular Physiology of the Brain
Bernstein Center for Computational Neuroscience
University Medical Center Goettingen
D-37075 Göttingen

Tel: +49 (0)551 3922837
Fax: +49 (0)551 3912950

Press Release

  • „Beat the Prof: Was ist das absolute Gehör?“ [more]
  • „Uni Göttingen will wieder Exzellenz-Uni werden“ [more]
  • „Start-up "OptoGenTech" Licht soll taube Menschen wieder hörend machen“ [more]
  • „"Lichtsteuerung“ für Zellen: Projekt OptoGenTech am Photonik Inkubator Göttingen genehmigt“ [more]
  • „Optische Vermessung der Nano-Welt“ [more]
  • „Die optische Vermessung der synaptischen Nano-Welt“ [more]
  • „Wissenschaftspreis Niedersachsen 2017“ [more]
  • „Wissenschaftspreis für Tobias Moser“ [more]
  • „Tobias Moser ausgezeichnet“ [more]
  • „Wissenschaftspreis Niedersachsen für gleich zwei Wissenschaftler der UMG und an Studenten der Universität Göttingen“ [more]
  • „Optogenetic Therapies Move Closer to Clinical Use“ [more]
  • „Exzellenzstrategie / Vier Göttinger Forschungsprojekte in der Endrunde"“ [more]
  • „Versteckter Hörverlust / Einblicke in eine kaum bekannte Krankheit“ [more]
  • „Auf dem Sinne-Parcour: Was das Gehirn nur schwer verarbeitet“ [more]
  • „Sinnliches Experimentieren“ [more]
  • „Orchestrierung des Gehirns“: Zweiter Platz für Doktorandin der UMG beim Science Slam der Coimbra-Gruppe in Edinburgh [more]
  • Was tun bei einem Hörsturz? [more]
  • Ernst Jung Prize for Medicine 2017 [more]
  • New technology that can help the 360 million people with hearing loss [more]
  • "Göttingen-Spirit": Die Liga der Spitzenforscher [more]
  • Göttinger Wissenschaftler finden eine Ursache für Schwerhörigkeit [more]
  • Prof. Tobias Moser erhält Ernst Jung-Preis für Medizin 2017 [more]
  • Zu wenig Otoferlin macht das Hören „müde“ – auch bei Sport und bei Fieber [more]
  • Cochlear implants boosted by gene therapy plus tiny LEDs [more]
  • Light Therapy to Restore Hearing and Sight [more]
  • Verlorene Körperfunktion wiederherstellen [more]
  • Ministerium fördert fünf Göttinger Projekte [more]
  • Mit Licht hören: Optogenetik macht es möglich [more]
  • Lichtschalter gegen Blindheit [more]
  • Göttinger Hörforscher bahnen Weg zur Gentherapie der Schwerhörigkeit [more]
  • Müllabfuhr im Innenohr [more]
  • „Indefatigable Hearing“ – a molecular clearance mechanism enables synapses to continuously release transmitter [more]
  • 7,5 Millionen für Göttinger Neuro-Forscher [more]
  • Genetic Tweaks Are Restoring Hearing In Animals, Raising Hopes For People [more]
  • Hörforscher der Uni Göttingen mit Leibniz-Preis geehrt [more]
  • Der Klang des Lichts [more]
  • Mit Weißbüschelaffen gegen Taubheit [more]

Recent Publications

  • Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source / in press[more]
  • The synaptic ribbon is critical for sound encoding at high rates and with temporal precision [more]
  • The CAPOS mutation in ATP1A3 alters Na/K-ATPase function and results in auditory neuropathy which has implications for management [more]
  • Quantitative optical nanophysiology of Ca2+-signaling at inner hair cell active zones [more]
  • Glyoxal as an alternative to PFA in immunostainings and nanoscopy [more]
  • Piccolo promotes vesicle replenishment at a fast central auditory synapse [more]
  • RIM-binding protein 2 promotes a large number of CaV1.3 Ca2+-channels and contributes to fast synaptic vesicle replenishment at hair cell active zones [more]
  • Activity-Dependent Phosphorylation by CaMKIIδ Alters the Ca2+ Affinity of the Multi-C2-Domain Protein Otoferlin [more]
  • The BEACH protein LRBA is required for hair bundle maintenance in cochlear hair cells and for hearing [more]
  • Rab interacting molecules 2 and 3 directly interact with the pore-forming CaV1.3 Ca2+ channel subunit and promote its membrane expression [more]
  • Ca2+-binding protein 2 inhibits Ca2+-channel inactivation in mouse inner hair cells [more]
  • Conditional deletion of pejvakin in adult outer hair cells causes progressive hearing loss in mice [more]
  • Hair cell synaptic dysfunction, auditory fatigue and thermal sensitivity in otoferlin Ile515Thr mutants [more]
  • New insights into cochlear sound encoding [more]
  • Hair cells employ active zones with different voltage-dependence of Ca2+-influx to decompose sounds into complementary neural codes [more]
  • Tryptophan-rich basic protein (WRB) mediates insertion of the tail-anchored protein otoferlin and is required for hair cell exocytosis and hearing [more]
  • DNA Diagnostics of Hereditary Hearing Loss: A Targeted Resequencing Approach Combined With a Mutation Classification System [more]
  • Eyes without a ribbon [more]
  • Auditory neuropathy - neural and synaptic mechanisms [more]
  • Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing [more]
  • Reliable encoding and processing of auditory information is mediated by different types of synapses employing distinct molecular and structural mechanisms [more]
  • Gene therapy for deafness: How close are we? [more]
  • Synaptic encoding and processing of auditory information in physiology and disease [more]
  • Relating structure and function of inner hair cell ribbon synapses [more]
  • Rab3-interacting molecules 2α and 2β promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones [more]
  • EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells [more]