The InnerEarLab explores sensory processing in the inner ear during normal and impaired function. A common focus of the groups in the InnerEarLab is on sensory encoding in the inner ear by specialized synapses the hair cell ribbon synapses. We combine various techniques for studying the molecular anatomy and physiology of these synapses. The junior group of Ellen Reisinger deals with the molecular biology and genetics of cochlear neurotransmission, studying gene expression, protein biochemistry and structure of hair cell synaptic proteins and performs genetic manipulations of hair cells for physiological studies and preparing the grounds for future gene therapy. The junior group of Carolin Wichmann studies the molecular ultrastructure of synapses using light and electron microscopy. The group of Tobias Moser uses patch-clamp, optical methods, and biophysical modeling to study structure and function of hair cell ribbon synapse and the endbulb of Held synapse in the cochlear nucleus. The junior group of Tina Pangršič Vilfan studies the molecular and cellular physiology of vestibular neurotransmission. The junior group of Nicola Strenzke studies auditory systems physiology at the single neuron and population levels. The group of Bernstein Fellow Andreas Neef uses experiments and modeling to explore sound encoding at the microscopic scale. The Canis group studies cochlear blood flow using intravital microscopy and pharmacology. The Moser and Strenzke groups also work on establishing optogenetic stimulation of the auditory nerve as a tool for auditory research and improved hearing restoration by cochlear implants. The Canis, Moser, and Strenzke groups also perform clinical research.

ContactUs

InnerEarLab
Institute for Auditory Neuroscience
Department of Otolaryngology
Sensory Research Center SFB 889
Center for Molecular Physiology of the Brain
Bernstein Center for Computational Neuroscience
University Medical Center Goettingen
D-37075 Göttingen

Tel: +49 (0)551 3922837
Fax: +49 (0)551 3912950

Press Release

  • Exzellenzcluster für interdisziplinäre biomedizinische Forschung mit hochauflösenden Bildgebungsverfahren an der Universität Göttingen bewilligt[more]
  • Optisches Cochlea-Implantat [more]
  • Tobias Moser was awarded the Eurolife Medal 2018[more]
  • Optisches Cochlea-Implantat [more]
  • Light Beam Lets the Deaf (Gerbil) Hear
    A next-generation cochlear implant might allow the hearing-impaired to listen to music and cope with noise [more]
  • Licht lässt taube Mäuse aufhorchen [more]
  • Optical cochlear implants restore hearing in deaf gerbils [more]
  • Erfolg für Göttinger Forscher: Taube Mäuse können hören [more]
  • Ear implant lets deaf gerbils sense sound from light signals [more]
  • Device Uses Flashes of Light to Restore Hearing [more]
  • Pulses of light restored hearing in gerbils. Could that lead to higher-tech cochlear implants? [more]
  • The Digest: Scientists Create New Cochlear Implants That Allow Gerbils to “Hear” Light [more]
  • „Forscher: Taube sollen mit Licht wieder hören"
    "Viele Menschen werden im Laufe ihres Lebens schwerhörig oder gar taub. Ein Grund: Die Haarzellen des Innenohrs werden geschädigt..." [more]
  • „Wie kommt der Klang in unser Ohr?
    Mit "Lichthören" könnten mehr Informationen über Schallfrequenzen weiter gegeben werden. Neue Hoffnungen für Schwerhörige?" [more]
  • „Dieses Gerät soll Schwerhörigen noch besser helfen" [more]
  • „Versteckte Schwerhörigkeit
    Keine Musik mehr, wenn sie laut ist" [more]
  • „Wichmann entschlüsselt Vorgänge zum Hören" [more]
  • „Kinder horchen zum Thema Hören"
    Hören und nicht hören – von haarigen Zellen und leuchtenden Ohren [more]
  • „Internationale Tagung in Göttingen
    Molekulare Grundlagen des Hörens“ [more]
  • „"InnoTruck" stoppt in Göttingen“ [more]

Recent Publications

  • Individual synaptic vesicles mediate stimulated exocytosis from cochlear inner hair cells[more]
  • Ca2+ regulates the kinetics of synaptic vesicle fusion at the afferent inner hair cell synapses[more]
  • Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos[more]
  • Vesicle sub-pool organization at inner hair cell ribbon synapses[more]
  • Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear[more]
  • Cytomatrix proteins CAST and ELKS regulate retinal photoreceptor development and maintenance[more]
  • Towards the optical cochlear implant[more]
  • Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils [more]
  • Functions of CaBP1 and CaBP2 in the peripheral auditory system [more]
  • High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics [more]
  • High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis[more]
  • Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source / in press[more]
  • The synaptic ribbon is critical for sound encoding at high rates and with temporal precision [more]
  • The CAPOS mutation in ATP1A3 alters Na/K-ATPase function and results in auditory neuropathy which has implications for management [more]
  • Molekulares Verstehen des Hörens - Was ändert sich für den Patienten? [more]
  • Quantitative optical nanophysiology of Ca2+-signaling at inner hair cell active zones [more]