The InnerEarLab explores sensory processing in the inner ear during normal and impaired function. A common focus of the groups in the InnerEarLab is on sensory encoding in the inner ear by specialized synapses the hair cell ribbon synapses. We combine various techniques for studying the molecular anatomy and physiology of these synapses. The junior group of Ellen Reisinger deals with the molecular biology and genetics of cochlear neurotransmission, studying gene expression, protein biochemistry and structure of hair cell synaptic proteins and performs genetic manipulations of hair cells for physiological studies and preparing the grounds for future gene therapy. The junior group of Carolin Wichmann studies the molecular ultrastructure of synapses using light and electron microscopy. The group of Tobias Moser uses patch-clamp, optical methods, and biophysical modeling to study structure and function of hair cell ribbon synapse and the endbulb of Held synapse in the cochlear nucleus. The junior group of Tina Pangršič Vilfan studies the molecular and cellular physiology of vestibular neurotransmission. The junior group of Nicola Strenzke studies auditory systems physiology at the single neuron and population levels. The group of Bernstein Fellow Andreas Neef uses experiments and modeling to explore sound encoding at the microscopic scale. The Canis group studies cochlear blood flow using intravital microscopy and pharmacology. The Moser and Strenzke groups also work on establishing optogenetic stimulation of the auditory nerve as a tool for auditory research and improved hearing restoration by cochlear implants. The Canis, Moser, and Strenzke groups also perform clinical research.

ContactUs

InnerEarLab
Institute for Auditory Neuroscience
Department of Otolaryngology
Sensory Research Center SFB 889
Center for Molecular Physiology of the Brain
Bernstein Center for Computational Neuroscience
University Medical Center Goettingen
D-37075 Göttingen

Tel: +49 (0)551 3922837
Fax: +49 (0)551 3912950

Press Release

  • „Auf dem Sinne-Parcour: Was das Gehirn nur schwer verarbeitet“ [more]
  • „Sinnliches Experimentieren“ [more]
  • „Orchestrierung des Gehirns“: Zweiter Platz für Doktorandin der UMG beim Science Slam der Coimbra-Gruppe in Edinburgh [more]
  • Was tun bei einem Hörsturz? [more]
  • Ernst Jung Prize for Medicine 2017 [more]
  • New technology that can help the 360 million people with hearing loss [more]
  • "Göttingen-Spirit": Die Liga der Spitzenforscher [more]
  • Göttinger Wissenschaftler finden eine Ursache für Schwerhörigkeit [more]
  • Prof. Tobias Moser erhält Ernst Jung-Preis für Medizin 2017 [more]
  • Zu wenig Otoferlin macht das Hören „müde“ – auch bei Sport und bei Fieber [more]
  • Cochlear implants boosted by gene therapy plus tiny LEDs [more]
  • Light Therapy to Restore Hearing and Sight [more]
  • Verlorene Körperfunktion wiederherstellen [more]
  • Ministerium fördert fünf Göttinger Projekte [more]
  • Mit Licht hören: Optogenetik macht es möglich [more]
  • Lichtschalter gegen Blindheit [more]
  • Göttinger Hörforscher bahnen Weg zur Gentherapie der Schwerhörigkeit [more]
  • Müllabfuhr im Innenohr [more]
  • „Indefatigable Hearing“ – a molecular clearance mechanism enables synapses to continuously release transmitter [more]
  • 7,5 Millionen für Göttinger Neuro-Forscher [more]
  • Genetic Tweaks Are Restoring Hearing In Animals, Raising Hopes For People [more]
  • Hörforscher der Uni Göttingen mit Leibniz-Preis geehrt [more]
  • Der Klang des Lichts [more]
  • Mit Weißbüschelaffen gegen Taubheit [more]
  • Tobias Moser von der UMG Göttingen ist einer von acht Leibniz-Preisträgern [more]
  • Leibniz-Preis für Prof. Tobias Moser [more]
  • Neue Erkenntnisse: Datenübertragung im Innenohr ist höchst effizient [more]
  • Leibniz-Preis 2015 für Hörforschung und optogenetische Ansätze [more]
  • Leibniz Prize for Tobias Moser [more]
  • Göttinger Wissenschaftler Tobias Moser erhält Leibniz-Preis [more]
  • Die Sinne verstehen. Sonderforschungsbereich der UMG für weitere 4 Jahre gefördert [more]
  • Wie das Hören gelingt: Göttinger Wissenschaftler entschlüsseln Details [more]

Recent Publications

  • Rab interacting molecules 2 and 3 directly interact with the pore-forming CaV1.3 Ca2+ channel subunit and promote its membrane expression [more]
  • Ca2+-binding protein 2 inhibits Ca2+-channel inactivation in mouse inner hair cells [more]
  • Conditional deletion of pejvakin in adult outer hair cells causes progressive hearing loss in mice [more]
  • Hair cell synaptic dysfunction, auditory fatigue and thermal sensitivity in otoferlin Ile515Thr mutants [more]
  • New insights into cochlear sound encoding [more]
  • Hair cells employ active zones with different voltage-dependence of Ca2+-influx to decompose sounds into complementary neural codes [more]
  • Tryptophan-rich basic protein (WRB) mediates insertion of the tail-anchored protein otoferlin and is required for hair cell exocytosis and hearing [more]
  • DNA Diagnostics of Hereditary Hearing Loss: A Targeted Resequencing Approach Combined With a Mutation Classification System [more]
  • Eyes without a ribbon [more]
  • Auditory neuropathy - neural and synaptic mechanisms [more]
  • Disruption of adaptor protein 2μ (AP-2μ) in cochlear hair cells impairs vesicle reloading of synaptic release sites and hearing [more]
  • Reliable encoding and processing of auditory information is mediated by different types of synapses employing distinct molecular and structural mechanisms [more]
  • Gene therapy for deafness: How close are we? [more]
  • Synaptic encoding and processing of auditory information in physiology and disease [more]
  • Relating structure and function of inner hair cell ribbon synapses [more]
  • Rab3-interacting molecules 2α and 2β promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones [more]
  • EF-hand protein Ca2+ buffers regulate Ca2+ influx and exocytosis in sensory hair cells [more]
  • Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells [more]
  • Optogenetic stimulation of the auditory pathway for research and future prosthetics [more]
  • Relating structure and function of inner hair cell ribbon synapses [more]
  • Considering optogenetic stimulation for cochlear implants [more]
  • Uniquantal Release through a Dynamic Fusion Pore Is a Candidate Mechanism of Hair Cell Exocytosis [more]