The InnerEarLab explores sensory processing in the inner ear during normal and impaired function. A common focus of the groups in the InnerEarLab is on sensory encoding in the inner ear by specialized synapses the hair cell ribbon synapses. We combine various techniques for studying the molecular anatomy and physiology of these synapses. The junior group of Ellen Reisinger deals with the molecular biology and genetics of cochlear neurotransmission, studying gene expression, protein biochemistry and structure of hair cell synaptic proteins and performs genetic manipulations of hair cells for physiological studies and preparing the grounds for future gene therapy. The junior group of Carolin Wichmann studies the molecular ultrastructure of synapses using light and electron microscopy. The group of Tobias Moser uses patch-clamp, optical methods, and biophysical modeling to study structure and function of hair cell ribbon synapse and the endbulb of Held synapse in the cochlear nucleus. The junior group of Tina Pangršič Vilfan studies the molecular and cellular physiology of vestibular neurotransmission. The junior group of Nicola Strenzke studies auditory systems physiology at the single neuron and population levels. The group of Bernstein Fellow Andreas Neef uses experiments and modeling to explore sound encoding at the microscopic scale. The Canis group studies cochlear blood flow using intravital microscopy and pharmacology. The Moser and Strenzke groups also work on establishing optogenetic stimulation of the auditory nerve as a tool for auditory research and improved hearing restoration by cochlear implants. The Canis, Moser, and Strenzke groups also perform clinical research.


Institute for Auditory Neuroscience
Department of Otolaryngology
Sensory Research Center SFB 889
Center for Molecular Physiology of the Brain
Bernstein Center for Computational Neuroscience
University Medical Center Goettingen
D-37075 Göttingen

Tel: +49 (0)551 3922837
Fax: +49 (0)551 3912950

Job offers

  • There is no open position for now[more]

Press Release

  • Hochdotierter Wissenschaftspreis der Fondation Pour l’Audition für Göttinger Hörforscher[more]
  • Hearing restored in rats by modifying ear cells to respond to light [more]
  • Auf dem Weg zum optischen Cochlea-Implantat [more]
  • Vielkanaliges Cochlea-Implantaten mit Mikro-Leuchtdioden [more]
  • Göttinger Hörforscher setzen auf Licht-Implantat [more]
  • Lichtorgel im Ohr: Erstmals Einsatz von vielkanaligen Cochlea-Implantaten mit Mikro-Leuchtdioden [more]
  • Wie das Hören funktioniert – Göttinger Forscher veröffentlichen neue Erkenntnisse [more]
  • "Gemeinsam sind wir stark!“ Gekoppelte Haarsinneszellen im Innenohr [more]
  • Doktorandenpreis für Göttinger Nachwuchswissenschaftler [more]
  • Prof. Tobias Moser erhält traditionsreichen Guyot Preis für Otologie 2019 [more]
  • Taube Ohren lernen, Töne zu sehen
    Zukunftstechnik reizt gemanipulierten Hörnerv mit Licht [more]
  • Optogenetics in Cellular Biology and Human Disease Models[more]
  • Schwerhörigkeit: "Licht könnte den Menschen mehr Informationen über Tonhöhen zurückgeben“[more]
  • Göttinger "Händel-Talk" mit Wissenschaftlern und Musikern: Die Dosis macht den Hörgenuss [more]
  • Wie künstliches Hören durch Licht natürlicher werden könnte [more]
  • Was Musik-Machen mit Musik-Hören zu tun hat [more]
  • Mit Licht hören: Optogenetische Cochlea-Implantate bieten neue Möglichkeiten [more]

Recent Publications

  • Overloaded adeno-associated virus as a novel gene therapeutic tool for otoferlin-related deafness [ more]
  • Electron Microscopic Reconstruction of Neural Circuitry in the Cochlea [ more]
  • Understanding and Treating Paediatric Hearing Impairment [ more]
  • Viral rhodopsins 1 are an unique family of light-gated cation channels [ more]
  • A sensory cell diversifies its output by varying Ca2+ influx-release coupling among active zones[ more]
  • How does hearing work?[ more]
  • Recent advances in cochlear hair cell nanophysiology: subcellular compartmentalization of electrical signaling in compact sensory cells [more]
  • Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents [ more]
  • μLED-based optical cochlear implants for spectrally selective activation of the auditory nerve [more]
  • Macromolecular and electrical coupling betwe inner hair cells in the rodent cochlea [ more]
  • Application of targeting-optimized Chronos for stimulation of the auditory pathway, accepted [ more]
  • A sensory cell diversifies its output by varying Ca2+ influx-release coupling among presynaptic active zones for wide range intensity coding, preprint [more]
  • Macromolecular and electrical coupling between inner hair cells in the rodent cochlea, accepted [ more]
  • Hearing restoration by a low-weight power-efficient multichannel optogenetic cochlear implant system, preprint [ more]
  • Electron Microscopic Reconstruction of Neural Circuitry in the Cochlea, preprint [more]
  • Circumvention of common labelling artefacts using secondary nanobodies [ more]
  • Presynaptic Physiology of Cochlear Inner Hair Cells, in print [ more]
  • Emerging approaches for restoration of hearing and vision [ more]
  • Towards the Optical Cochlear Implant: Optogenetic Approaches for Hearing Restoration [ more]
  • Towards optogenetic approaches for hearing restoration [ more]